Visual control of multi-rotor UAVs

نویسنده

  • Stuart Duncan
چکیده

Recent miniaturization of computer hardware, MEMs sensors, and high energy density batteries have enabled highly capable mobile robots to become available at low cost. This has driven the rapid expansion of interest in multi-rotor unmanned aerial vehicles. Another area which has expanded simultaneously is small powerful computers, in the form of smartphones, which nearly always have a camera attached, many of which now contain a OpenCL compatible graphics processing units. By combining the results of those two developments a low-cost multi-rotor UAV can be produced with a low-power onboard computer capable of real-time computer vision. The system should also use general purpose computer vision software to facilitate a variety of experiments. To demonstrate this I have built a quadrotor UAV based on control hardware from the Pixhawk project, and paired it with an ARM based single board computer, similar those in high-end smartphones. The quadrotor weights 980 g and has a flight time of 10minutes. The onboard computer capable of running a pose estimation algorithm above the 10Hz requirement for stable visual control of a quadrotor. A feature tracking algorithm was developed for efficient pose estimation, which relaxed the requirement for outlier rejection during matching. Compared with a RANSAConly algorithm the pose estimates were less variable with a Z-axis standard deviation 0.2 cm compared with 2.4 cm for RANSAC. Processing time per frame was also faster with tracking, with 95% confidence that tracking would process the frame within 50ms, while for RANSAC the 95% confidence time was 73ms. The onboard computer ran the algorithm with a total system load of less than 25%. All computer vision software uses the OpenCV library for common computer vision algorithms, fulfilling the requirement for running general purpose software. The tracking algorithm was used to demonstrate the capability of the system by performing visual servoing of the quadrotor (after manual takeoff). Response to external perturbations was poor however, requiring manual intervention to avoid crashing. This was due to poor visual controller tuning, and to variations in image acquisition and attitude estimate timing due to using free running image acquisition. The system, and the tracking algorithm, serve as proof of concept that visual control of a quadrotor is possible using small low-power computers and general purpose computer vision software.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Adaptive Control of Unmanned Aerial Vehicle for Carrying Time-Varying Cargo on Predefined Path

At present, the use of unmanned aerial vehicles (UAVs) has been increased dramatically. The reasons for this development are cheapness, smallness, simplicity, and diversity of missions. The simplicity of guidance and control of multi-rotor drones is that they are equipped with an autopilot system. This system is responsible for flying control. UAVs do not have a high weight and often have three...

متن کامل

An Evaluation on Fixed Wing and Multi-Rotor UAV Images Using Photogrammetric Image Processing

This paper has introduced a slope photogrammetric mapping using unmanned aerial vehicle. There are two units of UAV has been used in this study; namely; fixed wing and multi-rotor. Both UAVs were used to capture images at the study area. A consumer digital camera was mounted vertically at the bottom of UAV and captured the images at an altitude. The objectives of this study are to obtain three ...

متن کامل

A Review on Fault-Tolerant Control for Unmanned Aerial Vehicles (UAVs)

The growing number of Unmanned Aerial Vehicles (UAVs) is considerable in the last decades. Many flight test scenarios, including single and multi-vehicle formation flights, are demonstrated using different control algorithms with different test platforms. In this paper, we present a brief literature review on the development and key issues of current researches in the field of Fault-Tolerant Co...

متن کامل

A Design Configuration and Optimization for a Multi Rotor

Multi rotor UAVs offer great potential wide range of challenging applications due to the high manoeuvrability and to the potential to hover, take off and fly in small areas. Nevertheless, their design is in some way critical. The main concern is their inadequate level of handling qualities due to the intrinsic instabilities of this type of small size vehicles. A specific hardware with a control...

متن کامل

Noise Levels of Multi-Rotor Unmanned Aerial Vehicles with Implications for Potential Underwater Impacts on Marine Mammals

Despite the rapid increase in the use of unmanned aerial vehicles (UAVs) in marine mammal research, knowledge of the effects of UAVs on study animals is very limited. We recorded the in-air and in-water noise from two commonly used multi-rotor UAVs, the SwellPro Splashdrone and the DJI Inspire 1 Pro, to assess the potential for negative noise effects of UAV use. The Splashdrone and Inspire UAVs...

متن کامل

Airborne Seeker Application in Three Dimensional Formation Flight of UAVs

This paper deals with the leader-follower formation control problem while communication constraint in data transmitting is considered. From a practical point of view, we study the case in which unmanned vehicles are subject to the limited sensing, and communication is of a particular interest. A three-dimensional formation flight of multi-unmanned aerial vehicles with leader-follower configurat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014